pyttb.gcp.fg_est
Evaluate Functions And Gradients based on Subsamples.
- pyttb.gcp.fg_est.estimate(model: ktensor, data_subs: ndarray, data_vals: ndarray, weights: ndarray, function_handle: Literal[None], gradient_handle: Callable[[ndarray, ndarray], ndarray], lambda_check: bool = True, crng: ndarray | None = None) List[ndarray] [source]
- pyttb.gcp.fg_est.estimate(model: ktensor, data_subs: ndarray, data_vals: ndarray, weights: ndarray, function_handle: Callable[[ndarray, ndarray], ndarray], gradient_handle: Literal[None] = None, lambda_check: bool = False, crng: ndarray | None = None) float
- pyttb.gcp.fg_est.estimate(model: ktensor, data_subs: ndarray, data_vals: ndarray, weights: ndarray, function_handle: Callable[[ndarray, ndarray], ndarray], gradient_handle: Callable[[ndarray, ndarray], ndarray], lambda_check: bool, crng: ndarray | None) Tuple[float, List[ndarray]]
Estimate the GCP function and gradient with a subsample.
- Parameters:
model – Current decomposition.
data_subs – Subscripts of data sample.
data_vals – Values of data sample.
function_handle – Handle to evaluate objective function.
gradient_handle – Handle to evaluate gradient of objective function.
lambda_check – Whether or not to check decomposition weights are all ones. (Which is assumed in implementation details)
crng – Range of indices for correct/adjustment when zeros are sampled accidentally.
- Returns:
Estimated objective function value and/or estimated gradient value with
respect to the model.
- pyttb.gcp.fg_est.estimate_helper(factors: List[ndarray], subs: ndarray) Tuple[ndarray, List[ndarray]] [source]
Extract model values at sample locations and exploded Zk’s.
- Parameters:
factors – Factor matrices from model.
subs – Subscripts to extract from model.
- Returns:
Model values at subs and exploded Zk’s