pyttb.gcp.handles
Implementation of the different function and gradient handles for GCP OPT.
- class pyttb.gcp.handles.Objectives(value)[source]
Bases:
Enum
Valid objective functions for GCP.
- GAUSSIAN = 0
- BERNOULLI_ODDS = 1
- BERNOULLI_LOGIT = 2
- POISSON = 3
- POISSON_LOG = 4
- RAYLEIGH = 5
- GAMMA = 6
- HUBER = 7
- NEGATIVE_BINOMIAL = 8
- BETA = 9
- pyttb.gcp.handles.gaussian(data: ndarray, model: ndarray) ndarray [source]
Return objective function for gaussian distributions.
- pyttb.gcp.handles.gaussian_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for gaussian distributions.
- pyttb.gcp.handles.bernoulli_odds(data: ndarray, model: ndarray) ndarray [source]
Return objective function for bernoulli distributions.
- pyttb.gcp.handles.bernoulli_odds_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for bernoulli distributions.
- pyttb.gcp.handles.bernoulli_logit(data: ndarray, model: ndarray) ndarray [source]
Return objective function for bernoulli logit distributions.
- pyttb.gcp.handles.bernoulli_logit_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for bernoulli logit distributions.
- pyttb.gcp.handles.poisson(data: ndarray, model: ndarray) ndarray [source]
Return objective function for poisson distributions.
- pyttb.gcp.handles.poisson_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for poisson distributions.
- pyttb.gcp.handles.poisson_log(data: ndarray, model: ndarray) ndarray [source]
Return objective function for log poisson distributions.
- pyttb.gcp.handles.poisson_log_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for log poisson distributions.
- pyttb.gcp.handles.rayleigh(data: ndarray, model: ndarray) ndarray [source]
Return objective function for rayleigh distributions.
- pyttb.gcp.handles.rayleigh_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for rayleigh distributions.
- pyttb.gcp.handles.gamma(data: ndarray, model: ndarray) ndarray [source]
Return objective function for gamma distributions.
- pyttb.gcp.handles.gamma_grad(data: ndarray, model: ndarray) ndarray [source]
Return gradient function for gamma distributions.
- pyttb.gcp.handles.huber(data: tensor, model: tensor, threshold: float) ndarray [source]
Return objective function for huber loss.
- pyttb.gcp.handles.huber_grad(data: tensor, model: tensor, threshold: float) ndarray [source]
Return gradient function for huber loss.
- pyttb.gcp.handles.negative_binomial(data: ndarray, model: ndarray, num_trials: float) ndarray [source]
Return objective function for negative binomial distributions.
- pyttb.gcp.handles.negative_binomial_grad(data: ndarray, model: ndarray, num_trials: float) ndarray [source]
Return gradient function for negative binomial distributions.